LOCAL ANAESTHETICS

Prepared By Doppalapudi Sandeep M. Pharmacy, **Assistant Professor Department of Physiology & Pharmacology Chebrolu Hanumaiah Institute of Pharmaceutical Sciences,** Chandramoulipuram, Chowdavaram, Guntur, Andhra **Pradesh, India – 522019**

- Local anaesthetics (LAs) are drugs which upon topical application or local injection cause reversible loss of sensory perception, especially of pain, in a restricted area of the body.
- They block generation and conduction of nerve impulse at any part of the neurone with which they come in contact, without causing any structural damage.
- Thus, not only sensory but also motor impulses are interrupted when a LA is applied to a mixed nerve, resulting in muscular paralysis and loss of autonomic control as well.

CLASSIFICATION

Injectable anaesthetic

- Low potency, short duration
 - Procaine
 - Chloroprocaine
- Intermediate potency and duration
 - Lidocaine (Lignocaine)
 - Prilocaine
- High potency, long duration
 - Tetracaine (Amethocaine)
 - Bupivacaine
 - Ropivacaine
 - Dibucaine (Cinchocaine)

• Surface anaesthetic

- Soluble
 - Cocaine
 - Lidocaine
 - Tetracaine
 - Benoxinate

– Insoluble

- *Benzocaine
- *Butylaminobenzoate (butamben)
- *Oxethazaine

MECHANISM OF ACTION:

- •The Na+ channel has an activation gate (make or 'm' gate) near its extracellular mouth and an inactivation gate (halt or 'h' gate) at the intracellular mouth.
- •In the resting state the activation gate is closed. Threshold depolarization of the membrane opens the activation gate allowing Na+ ions to flow in along the concentration gradient.
- •Within a few msec, the inactivation gate closes and ion flow ceases.
- •The channel recovers to the resting state in a time-dependent manner.

- The LAs block nerve conduction by decreasing the entry of Na+ ions during upstroke of action potential (AP).
- As the concentration of the LA is increased, the rate of rise of AP and maximum depolarization decreases causing slowing of conduction.
- Finally, local depolarization fails to reach the threshold potential and conduction block ensues.
- At physiological pH, the LA molecule is partly ionized.
- The equilibrium between the unionized base form (B) and the ionized cationic form (BH+) depends on the pKa of the LA.
- Potency of a LA generally corresponds to the lipid solubility of its base form (B).

LOCAL ACTIONS OF LOCAL ANAESTEHTICS

- The clinically used local anaesthetics have no/minimal local irritant action.
- They block sensory nerve endings, nerve trunks, neuromuscular junction, ganglionic synapse and receptor which function through sodium channels.
- Reduces release of acetylcholine from nerve endings.
- Applied to the tongue, bitter taste is lost first followed by sweet and sour, and salty taste at last.
- Location of the fibre within a nerve trunk determines the latency, duration and often the depth of local anaesthesia.
- Nerve sheaths restrict diffusion of the local anaesthetic into the nerve trunk.
- They easily enter the axon at the nodes of Ranvier.
- The Local anaesthetics often fails to afford adequate pain control in inflamed tissues (due to increased blood flow).

Addition of a vasoconstrictor, e.g. Adrenaline to local anesthetic causes effects like;

- Prolongs duration of action of local anaesthetics by decreasing their rate of removal from the local site into the circulation.
- Enhances the intensity of nerve block.
- Reduces systemic toxicity of local anaesthetics.
- Provides a more bloodless field for surgery.
- Increases the chances of subsequent local tissue edema and necrosis as well as delays wound healing.
- May raise BP and promote arrhythmia.

SYSTEMIC ACTIONS OF LOCAL ANAESTHETICS

On CNS:

- All local anaesthetics are capable of producing a sequence of stimulation followed by depression.
- *Cocaine is* a powerful CNS stimulant causing in sequence;
- euphoria—excitement—mental confusion— restlessness—tremor and twitching of muscles— convulsions—unconsciousness—respiratory depression—death, in a dose-dependent manner.
- *Procaine and other synthetic local anaesthetics are much* less potent.

- At safe clinical doses, they produce little apparent CNS effects.
- Higher dose or accidental i.v. injection produces CNS stimulation followed by depression.
- The early neurological symptoms of overdose with *lidocaine and other clinically used local anaesthetics* are—numbness, abnormal sensation in the tongue, dizziness, blurred vision, tinnitus followed by drowsiness, dysphoria and lethargy.
- Still higher doses produce excitation, restlessness, agitation, muscle twitching, seizures and finally unconsciousness.
- The basic action of all local anaesthetics is neuronal inhibition; the apparent stimulation seen initially is due to inhibition of inhibitory neurones.
- At high doses, all neurones are inhibited and flattening of waves in the EEG is seen.

On C.V.S:

- Heart:
- Local anaesthetics are cardiac depressants.
- At high doses or on inadvertent i.v. injection, they decrease automaticity, excitability, contractility, conductivity and prolong effective refractory period (ERP).
- They have a quinidine like anti-arrhythmic action.
- *Procaine is not used* as anti-arrhythmic because of short duration of action and propensity to produce CNS effects.
- QT interval is prolonged and local anaesthetics can themselves induce cardiac arrhythmias.
- *Bupivacaine is relatively more cardiotoxic and* has produced ventricular tachycardia or fibrillation.
- Lidocaine has little effect on contractility and conductivity.

On C.V.S:

- Blood vessels:
- Local anaesthetics tend to produce fall in BP. This is primarily due to sympathetic blockade.
- Bupivacaine is more vasodilatory than lidocaine, while prilocaine is the least vasodilatory.
- Toxic doses of local anaesthetics produce cardiovascular collapse.
- *Cocaine has* sympathomimetic property; causes local vasoconstriction, marked rise in BP and tachycardia.

PHARMACOKINETICS

 Because local anaesthetics act near their site of administration, pharmacokinetic characteristics are not important determinants of their efficacy, but markedly influence their systemic effects and toxicity.

- Soluble surface anaesthetics (lidocaine, tetracaine) are rapidly absorbed from mucous membranes and abraded areas, but absorption from intact skin is minimal.
- Procaine does not significantly penetrate mucous membranes.
- Rate of absorption depends on the blood flow to the area of application or injection
- The absorbed local anaesthetic being lipophilic is widely distributed; rapidly enters highly perfused brain, heart, liver, and kidney, followed by muscle and other viscera.
- Procaine is negligibly bound to plasma proteins, but amide LAs are bound to plasma α1 acid glycoprotein.
- Local anaesthetics are rapidly but temporarily bound to tissues, especially nerves, at the site of injection.

- Ester-linked anaesthetics (procaine, etc.) are rapidly hydrolysed by plasma pseudocholinesterase and the remaining by esterases in the liver.
- Amide-linked anaesthetics (lidocaine, etc.) are degraded only in the liver microsomes by dealkylation and hydrolysis.
- Metabolism of lidocaine is hepatic blood-flow dependent.
- After oral ingestion both procaine and lidocaine have high first pass metabolism in the liver.
- Thus, they are not active orally for anti-arrhythmic purposes.

ADVERSE EFFECTS

- Systemic toxicity on rapid i.v. Injection.
- Toxicity after topical application or regional injection is influenced by the relative rates of absorption and metabolism.
- Those rapidly absorbed but slowly metabolized are more toxic.

Hypersensitivity reactions:

- Rashes, angioedema, dermatitis, contact sensitization and asthma.
- These are more common with ester-linked agents, but rare with lidocaine or its congeners.
- Cross reactivity is frequent among ester compounds, but not with amide-linked LAs.
- Often methylparaben added as preservative in certain local anaesthetic solutions is responsible for the allergic reaction.

PRECAUTIONS AND INTERACTIONS

- Before injecting the local anaesthetic, aspirate lightly to avoid intravascular injection.
- Inject the LA slowly and take care not to exceed the maximum safe dose, especially in children.
- Propranolol (probably other β blockers also) may reduce metabolism of lidocaine and other amide anaesthetics by reducing hepatic blood flow.
- Vasoconstrictor (adrenaline) containing local anaesthetic should be avoided for patients with ischaemic heart disease, cardiac arrhythmia, thyrotoxicosis, uncontrolled hypertension, and those receiving β blockers (rise in BP can occur) or tricyclic antidepressants (uptake blockade & potentiation of Adr).

INJECTABLE ANAESTHETIC – LOW POTENCY & SHORT DURATION Procaine:

- It is the first synthetic local anaesthetic introduced in 1905.
- Its popularity declined after the introduction of lidocaine, and it is not used now.
- It is not a surface anaesthetic.
- Procaine forms poorly soluble salt with benzyl penicillin.
- *Procaine penicillin injected i.m. acts for 24 hours due to* slow absorption from the site of injection.

INJECTABLE ANAESTHETIC – INTERMEDIATE POTENCY & DURATION Lidocaine (Lignocaine):

- Introduced in 1948, it is currently the most widely used local anaesthetic.
- It is good both for surface application and injection and is available in a variety of forms.
- Injected around a nerve it blocks conduction within 3 min (procaine may take 15 min).
- Anaesthesia is more intense and longer lasting.
- Vasodilatation occurs in the injected area.
- It is used for surface application, infiltration, nerve block, epidural, spinal and intravenous regional block anaesthesia.
- Cross sensitivity with ester LAs is not seen.
- Early central effects of lidocaine are depressant, i.e. drowsiness, mental clouding, dysphoria, altered taste and tinnitus.
- Overdose causes muscle twitching, convulsions, cardiac arrhythmias, fall in BP, coma and respiratory arrest like other LAs.
- Lidocaine is a popular antiarrhythmic.
 DOSE: 2% jelly, 2% viscous, 5% ointment, 1% and 2% injection

INJECTABLE ANAESTHETIC – HIGH POTENCY & LONG DURATION

Tetracaine (Amethocaine):

- A highly lipid soluble PABA ester, more potent and more toxic due to slow hydrolysis by plasma pseudocholinesterase.
- It is both surface and conduction block anaesthetic.
- Its use is restricted to topical application to the eye, nose, throat, tracheobronchial tree and rarely for spinal or caudal anaesthesia of long duration.
- Though it is slow acting, absorption from tracheobronchial spray is very fast and blood concentrations approach those attained after i.v. injection.

DOSE: ANETHANE powder for solution, 1% ointment.

INJECTABLE ANAESTHETIC – HIGH POTENCY & LONG DURATION Bupivacaine:

- A potent and long-acting amide linked local anaesthetic: used for infiltration, nerve block, epidural and spinal anaesthesia of long duration.
- 0.25–0.5% solution injected epidurally produces analgesia without significant motor blockade.
- As a result, it has become very popular in obstetrics (mother can actively cooperate in vaginal delivery) and for postoperative pain relief by continuous epidural infusion.
- It has high lipid solubility; distributes more in tissues than in blood after spinal/epidural injection.
- It is less likely to reach the foetus (when used during labour) to produce neonatal depression.
- Bupivacaine is more prone to prolong QT interval and induce ventricular tachycardia or cardiac depression—should not be used for intravenous regional analgesia.
- Epidural anaesthesia with 0.75% bupivacaine during labour has caused few fatalities due to cardiac arrest; use of this concentration is contraindicated.
- MARCAIN 0.5%, 1% (spinal anaesthesia).

SURFACE ANAESTHETIC – SOLUBLE

Cocaine:

- It is a natural alkaloid from leaves of *Erythroxylon coca, a south American plant growing on the* Andes.
- Cocaine is a good surface anaesthetic and is rapidly absorbed from buccal mucous membrane.
- It was first used for ocular anaesthesia in 1884.
- Cocaine should never be injected.
- It is a protoplasmic poison and causes tissue necrosis.
- Cocaine produces prominent CNS stimulation with marked effect on mood and behaviour.
- It induces a sense of wellbeing, delays fatigue and increases power of endurance.
- In susceptible individuals it produces a state referred to as 'high' leading to strong psychological but little physical dependence.
- Cocaine is unique among drugs of abuse in not producing significant tolerance on repeated use; sometimes reverse tolerance is seen (behavioural effects are experienced at lower doses).
- Cocaine also stimulates vagal centre→bradycardia; vasomotor centre→rise in BP; vomiting centre→nausea and vomiting; temperature regulating centre→pyrexia.

SURFACE ANAESTHETIC – SOLUBLE

Cocaine:

- In the periphery, it blocks uptake of NA and Adr into adrenergic nerve endings, *resulting in higher* concentration of the transmitter around the receptors.
- It produces sympathomimetic effect.
- Local vasoconstriction, tachycardia, rise in BP and mydriasis are the manifestations of its sympathomimetic action.
- The only indication for cocaine is in ocular anaesthesia.
- However, it causes constriction of conjunctival vessels, clouding and rarely sloughing of cornea.

Benoxinate:

- It is a good surface anaesthetic for the eye; has little irritancy.
- A 0.4% solution rapidly produces corneal anaesthesia sufficient for tonometry without causing mydriasis or corneal damage.
- BENDZON 0.4% eye drops.

SURFACE ANAESTHETIC – INSOLUBLE

Benzocaine and Butamben:

- Because of very low aqueous solubility, these local anaesthetics are not significantly absorbed from mucous membranes or abraded skin.
- They produce long-lasting anaesthesia without systemic toxicity.
- They are used as lozenges for stomatitis, sore throat; as dusting powder/ointment on wounds/ulcerated surfaces and as suppository for anorectal lesions.
- Both are PABA derivative—can antagonize sulfonamides locally.
- Butamben 1% ointment with framycetin and hydrocortisone acetate: for piles.
- PROCTOQUINOL 5% ointment of benzocaine.